Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37765318

RESUMO

The antimycobacterial drug clofazimine (CFZ) is used as a single agent at high doses, to suppress the exaggerated inflammation associated with leprosy. Paradoxically, increasing doses of CFZ leads to bioaccumulation of CFZ in the spleen and other organs under physiologically relevant dosing regimens, without accompanying dose-dependent elevation in the concentrations of the circulating drug in the blood. In long-term oral dosing regimens, CFZ induces immunological and metabolic changes resulting in splenomegaly, while the mass of other organs decreases or remains unchanged. As an organ that extensively sequesters CFZ as insoluble drug precipitates, the spleen likely influences drug-induced inflammatory signaling. To probe the role of systemic drug concentrations vs. drug bioaccumulation in the spleen, healthy mice were treated with six different dosing regimens. A subgroup of these mice underwent surgical splenectomies prior to drug treatment to assess the bioaccumulation-dependent changes in immune system signaling and immune-system-mediated drug distribution. Under increasing drug loading, the spleen was observed to grow up to six times in size, sequestering over 10% of the total drug load. Interestingly, when the spleen was removed prior to CFZ administration, drug distribution in the rest of the organism was unaffected. However, there were profound cytokine elevations in the serum of asplenic CFZ-treated mice, indicating that the spleen is primarily involved in suppressing the inflammatory signaling mechanisms that are upregulated during CFZ bioaccumulation. Thus, beyond its role in drug sequestration, the spleen actively modulates the systemic effect of CFZ on the immune system, without impacting its blood concentrations or distribution to the rest of the organism.

2.
J Control Release ; 347: 620-631, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623493

RESUMO

Weakly basic small molecule drugs like clofazimine can be used as building blocks for endowing cells with unnatural structural and functional elements. Here, we describe how clofazimine represents a first-in-class mechanopharmaceutical device, serving to construct inert, inactive and stimulus responsive drug depots within the endophagolysosomal compartment of cells of living organisms. Upon oral administration, clofazimine molecules self-assemble into stable, membrane-bound, crystal-like drug inclusions (CLDI) that accumulate within macrophages to form a "smart" biocompatible, pathogen activatable mechanopharmaceutical device. Upon perturbation of the mechanism maintaining pH and ion homeostasis of these CLDIs, the inert encapsulated drug precipitates are destabilized, releasing bioactive drug molecules into the cell and its surrounding. The resulting increase in clofazimine solubility activates this broad-spectrum antimicrobial, antiparasitic, antiviral or cytotoxic agent within the infected macrophage. We present a general, molecular design strategy for using clofazimine and other small molecule building blocks for the cytoplasmic construction of mechanopharmaceutical devices, aimed at rapid deployment during infectious disease outbreaks, for the purpose of pandemic prevention.


Assuntos
Clofazimina , Macrófagos , Animais , Corpos de Inclusão , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Solubilidade
3.
Pharmacotherapy ; 41(4): 405-420, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33583102

RESUMO

Cannabidiol (CBD), a non-psychotropic phytocannabinoid from the Cannabis plant, is increasingly being pursued as a treatment for differing ailments. The bioavailability and pharmacokinetics of CBD are not well understood, and proper dosing schemes have not been adequately developed for its clinical use. CBD is a lipophilic molecule and exhibits low water solubility, so its formulation expectedly impacts its gastrointestinal absorption and subsequent blood plasma concentrations. In this review article, the food effects on CBD pharmacokinetics were analyzed. Clinical trials focusing on the performance of Epidiolex, the FDA-approved CBD formulation, were found in several databases and systematically analyzed in terms of administration method, dosing schedules, and patient characteristics. 44 data sets from clinical trials were found to be useful in the quantitative analysis. Following the normalization of all the pharmacokinetic data sets by dose and patient weight, CBD exhibited a much greater bioavailability in fed patients. For Epidiolex, administration in the fed state led to lower interindividual variability and more predictable pharmacokinetics. Considering all the different oral formulations of CBD, further analysis points to the main excipient of oral CBD formulations (refined sesame seed oil) as a major contributor to the dose-dependent variations in CBD pharmacokinetics, especially affecting the fasted state. We discuss the implications of these results on the downstream pharmacodynamics of endocannabinoid receptor modulation and its broad physiological implications.


Assuntos
Canabidiol , Alimentos , Disponibilidade Biológica , Canabidiol/administração & dosagem , Canabidiol/farmacocinética , Ensaios Clínicos como Assunto , Humanos
4.
Pharmaceutics ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056910

RESUMO

Clofazimine (CFZ) is a poorly soluble, weakly basic, small molecule antibiotic clinically used to treat leprosy and is now in clinical trials as a treatment for multidrug resistant tuberculosis and COVID-19. CFZ exhibits complex, context-dependent pharmacokinetics that are characterized by an increasing half-life in long term treatment regimens. The systemic pharmacokinetics of CFZ have been previously represented by a nonlinear, 2-compartment model incorporating an expanding volume of distribution. This expansion reflects the soluble-to-insoluble phase transition that the drug undergoes as it precipitates out and accumulates within macrophages disseminated throughout the organism. Using mice as a model organism, we studied the mechanistic underpinnings of this increasing half-life and how the systemic pharmacokinetics of CFZ are altered with continued dosing. To this end, M. tuberculosis infection status and multiple dosing schemes were studied alongside a parameter sensitivity analysis (PSA) to further understanding of systemic drug distribution. Parameter values governing the sigmoidal expansion function that captures the phase transition were methodically varied, and in turn, the systemic concentrations of the drug were calculated and compared to the experimentally measured concentrations of drug in serum and spleen. The resulting amounts of drug sequestered were dependent on the total mass of CFZ administered and the duration of drug loading. This phenomenon can be captured by altering three different parameters of an expansion function corresponding to key biological determinants responsible for the precipitation and the accumulation of the insoluble drug mass in macrophages. Through this analysis of the context dependent pharmacokinetics of CFZ, a predictive framework for projecting the systemic distribution and self-assembly of precipitated drug complexes as intracellular mechanopharmaceutical devices of this and other drugs exhibiting similarly complex pharmacokinetics can be constructed.

5.
Pharmaceutics ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35056913

RESUMO

Clofazimine (CFZ) is a weakly basic, small-molecule antibiotic used for the treatment of mycobacterial infections including leprosy and multidrug-resistant tuberculosis. Upon prolonged oral administration, CFZ precipitates and accumulates within macrophages throughout the host. To model the pharmacokinetics of CFZ, the volume of distribution (Vd) was considered as a varying parameter that increases with continuous drug loading. Fitting the time-dependent change in drug mass and concentration data obtained from CFZ-treated mice, we performed a quantitative analysis of the systemic disposition of the drug over a 20-week treatment period. The pharmacokinetics data were fitted using various classical compartmental models sampling serum and spleen concentration data into separate matrices. The models were constructed in NONMEM together with linear and nonlinear sigmoidal expansion functions to the spleen compartment to capture the phase transition in Vd. The different modeling approaches were compared by Akaike information criteria, observed and predicted concentration correlations, and graphically. Using the composite analysis of the modeling predictions, adaptive fractional CFZ sequestration, Vd and half-life were evaluated. When compared to standard compartmental models, an adaptive Vd model yielded a more accurate data fit of the drug concentrations in both the serum and spleen. Including a nonlinear sigmoidal equation into compartmental models captures the phase transition of drugs such as CFZ, greatly improving the prediction of population pharmacokinetics and yielding further insight into the mechanisms of drug disposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...